The researchers overcame a major limitation of previous ice-repellent coatings—while they worked well on small areas, researchers found in field testing that they didn’t shed ice on very large surfaces as effectively as they had hoped. That’s an issue, since ice tends to cause the biggest problems on the biggest surfaces—sapping efficiency, jeopardizing safety and necessitating costly removal.I've noticed this effect in trying to break an ice dam on the roof, or defrosting an old refrigerator. Prying doesn't work unless you vertically cut the ice into pieces less than six inches across.
They cleared this hurdle with a “beautiful demonstration of mechanics.” Anish Tuteja, an associate professor of materials science and engineering, described how he and his colleagues turned to a property that isn’t well-known in icing research.
“For decades, coating research has focused on lowering adhesion strength—the force per unit area required to tear a sheet of ice from a surface,” Tuteja said. “The problem with this strategy is that the larger the sheet of ice, the more force is required. We found that we were bumping up against the limits of low adhesion strength, and our coatings became ineffective on large surfaces.
“Imagine pulling a rug across a floor,” said Michael Thouless. “The larger the rug, the harder it is to move. You are resisted by the strength of the entire interface between the rug and floor. The frictional force is analogous to the interfacial strength. But now imagine there’s a wrinkle in that rug. It’s easy to keep pushing that wrinkle across the rug, regardless of how big the rug is. The resistance to propagating the wrinkle is analogous to the interfacial toughness that resists the propagation of a crack.”Simpler analogy, understandable by everyone... not even an analogy. A literal example of the process itself.
The current icon shows Polistra using a Personal Equation Machine.