By calculating just one number from their experimental results, called a P value, researchers could now deem those results “statistically significant.” That was all it took to claim — even if mistakenly — that an interesting and powerful effect had been demonstrated. The idea took off, and soon legions of researchers were reporting statistically significant results.Bower states the solution clearly:
Keep it simple, Loftus advised. Remember that a picture is worth a thousand reckonings of statistical significance. In that spirit, he recommended reporting straightforward averages to compare groups of volunteers in a psychology experiment. Graphs could show whether individuals’ scores covered a broad range or clumped around the average, enabling a calculation of whether the average score would likely change a little or a lot in a repeat study. In this way, researchers could evaluate, say, whether volunteers scored better on a difficult math test if first allowed to write about their thoughts and feelings for 10 minutes, versus sitting quietly for 10 minutes.Graphs, graphs, graphs. Let readers SEE what's there. Don't smash the graphs into one number that collapses the time axis.
Labels: Blinded by Stats, Carbon Cult, Carver
The current icon shows Polistra using a Personal Equation Machine.